

The Effectiveness of Assessment Learning Objects
Produced Using Pair Programming
Andrew Adams, Jude Lubega, Sue Walmsley and Shirley Williams
School of Systems Engineering, The University of Reading, UK,
a.a.adams@rdg.ac.uk
j.t.lubega@rdg.ac.uk
sue.walmsley@rdg.ac.uk
shirley.williams@rdg.ac.uk

Abstract: Pair Programming is a technique from the software development method eXtreme Programming (XP)
whereby two programmers work closely together to develop a piece of software. A similar approach has been
used to develop a set of Assessment Learning Objects (ALO). Three members of academic staff have developed
a set of ALOs for a total of three different modules (two with overlapping content). In each case a pair
programming approach was taken to the development of the ALO. In addition to demonstrating the efficiency of
this approach in terms of staff time spent developing the ALOs, a statistical analysis of the outcomes for students
who made use of the ALOs is used to demonstrate the effectiveness of the ALOs produced via this method.

Keywords: Learning Objects, Assessment, Blended Learning, Pair Programming

1. Introduction

At The University of Reading a blended
learning (Lubega and Williams 2003) approach
is taken to the separate modules:

Learning objects [LOs] (Wiley 2000a) are a
new design concept for “learning content”:
digital entities suitable for reuse. Instructional
Designers build small instructional components
that can be re-used in different contexts. An
example learning object would be a short
introduction to Boolean logic. This object could
be incorporated into many subject areas:
mathematics; philosophy; computing;
engineering. Related objects could include a
multiple choice test on simple propositional
logic tautologies. Where a LO is designed for
assessment it can be called an Assessment
Learning Object [ALO].

 Introductory Programming
 Programming
 Functional Programming

and the students are experienced in using the
Blackboard Managed Learning Environment
(Blackboard 2003). For academic year 2002/3
the course structure at The University of
Reading changed: first year results had been
previously available in May, while students
were still attending classes, but from 2003 they
were only available at the end of June, just as
students departed for the summer vacation.
Resit examinations were still held in late
August, meaning that students who had failed
and needed to revise had eight weeks, but all
of it away from the academic environment. A
number of formative ALOs (i.e. quizzes) were
therefore deemed necessary for each module,
so that students could guide their revision from
the existing module notes and practical tasks
on Blackboard.

Many of the different approaches to
Instructional Design are based on software
development methods. For a range of software
development project types, traditional software
engineering methods have begun to be
regarded as too “heavyweight”, given their lack
of flexibility. This led to the development of
various "lightweight" or "agile" approaches to
software design. Combinations of such
approaches are often grouped under the title
“eXtreme Programming” [XP] (Beck 2000).
One of the most commonly used elements of
XP is “Pair Programming”, which involves two
programmers working on a small independent
section of a program. One programmer “drives”
the development, typing in the actual code,
while the other combines the role of “navigator”
(deciding which direction the “driver” takes
next) with that of “driving instructor” (providing
instant feedback and review of the code being
produced). The two programmers periodically
switch roles and, when necessary, brainstorm
solutions to tricky sections.

A learning object approach was decided upon,
so that the material could be reused in future
courses by a variety of students. A Pair
Programming approach was deemed highly
suitable for producing this material since it
gave the combination of swift production
together with high quality levels: revision tests
to be taken by students away from the
academic environment must be completely
correct (Adams et al 2003).

For each of the modules the development
process was recorded along with a comparison

ISSN 1479-4403 247 ©Academic Conferences Limited

mailto:a.a.adams@rdg.ac.uk
mailto:j.t.lubega@rdg.ac.uk
mailto:sue.walmsley@rdg.ac.uk
mailto:shirley.williams@rdg.ac.uk

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (247-256)

between prior experience of developing
Blackboard content alone and the new pair
programming approach. In each case a third
party reviewed the quality and correctness of
the learning material produced.

The term ALO is used to describe objects
specifically associated with assessment
(summative or formative) such as a multiple
choice test.

 3. Pair programming
The content of the ALOs were all developed as
Blackboard pools of questions. From these
pools individual questions were selected and
placed into short tests (ALOs) that exercised
particular learning outcomes for a module.

The concept of pair programming is part of the
wider idea of XP (Beck 2000), which has one
of those slightly nebulous definitions where
sometimes it is not clear whether a particular
process is XP or not. XP involves a number of
different software production methods.
Individual projects will use some or all of the
methods to a greater or lesser extent. Pair
programming is one of these methods. The
central philosophy of XP can be summed up
by this quote from the Series preface to the
Beck book:

Student usage of the ALOs was monitored and
compared with both the original and resit exam
results in order to check the utility of the ALOs
for supporting self-directed revision tasks.

2. Learning objects
Wiley (2000b) states: "Learning objects are
elements of a new type of computer-based
instruction grounded in the object-oriented
paradigm of computer science."

Although XP is often presented as
a list of practices, XP is not a
finish line. You don't get better
and better grades at doing XP
until you finally get the coveted
gold star. XP is a starting line. It
asks the question "How little can
we do and still build great
software?"

Within Computer Science the terms 'object'
and 'object-oriented' are widely used in a
variety of contexts, including: design methods,
programming languages and systems
(Sommerville 2001).
 Given the time constraints on academics, the

application of analogues of XP in preparation
of teaching material seemed obvious to the
authors. Pair Programming is one of the most
commonly used aspects of XP. The website
Object Mentor (2001) defines pair
programming as:

In 1996 the Institute of Electrical and Electronic
Engineers (IEEE) established the Learning
Technology Standards Committee (LTSC) to
develop standards, practices and guides for
learning technology (IEEE 1996), working
formally and informally with other groups from
around the world to ensure global standards.
One of their working groups (IEEE 2001)
provided the following definition:

Two programmers working side-
by-side, collaborating on the
same design, algorithm, code or
test. One programmer, the driver,
has control of the
keyboard/mouse and actively
implements the program. The
other programmer, the observer,
continuously observes the work of
the driver to identify tactical
(syntactic, spelling, etc.) defects
and also thinks strategically about
the direction of the work. On
demand, the two programmers
can brainstorm any challenging
problem. Because the two
programmers periodically switch
roles, they work together as
equals to develop software.

Learning Objects are defined here
as any entity, digital or non-digital,
which can be used, reused or
referenced during technology
supported learning. Examples of
technology supported learning
include computer-based training
systems, interactive learning
environments, intelligent
computer-aided instruction
systems, distance learning
systems, and collaborative
learning environments. Examples
of Learning Objects include
multimedia content, instructional
content, learning objectives,
instructional software and
software tools, and persons,
organizations, or events
referenced during technology
supported learning.

The aim of pair programming is to ensure
productivity of the programmers by avoiding
mental blocks and ensuring attention to both
detail of the current procedure and to the
overall scheme, and to improve code quality by

www.ejel.org ©Academic Conferences Limited 248

Andrew Adams, Jude Lubega, Sue Walmsley et al

avoiding syntactic and semantic errors (mis-
typing a variable name, using the wrong
variable or procedure call, using a "while...do"
instead of a "repeat...until" loop etc).

Writing a computer program and writing
interactive learning objects (and in particular
writing formative assessment objects) have
many similarities. In particular it is necessary to
produce high quality output. In programming
terms the program must do what is required
and only what is required in an efficient form,
with a suitable level of modularity and re-use of
code. In the production of ALOs the individual
questions and answers must be accurate and
a suitable coverage of the topic at hand must
be achieved.

For computer scientists familiar with a variety
of programming methods, pair programming
seemed a suitable method for applying to the
problem of quickly and efficiently producing
sets of questions for interactive formative
ALOs.

4. The modules
In this study three related modules on
programming were considered. A similar
approach to teaching and learning was used
with each.

4.1 Introductory programming
This module is intended for students with little
or no experience of programming. The main
thrust of this module is to provide the student
with a working knowledge of the basic
methods of Imperative (traditional)
Programming. Topics covered include
 The representation of data, including use

of arrays, records, arrays of records, sets,
components, basic objects and basic
pointers;

 Program constructs such as conditionals,
loops, functions and procedures and their
use;

 Design, implementation, testing and
debugging of a program to solve a
problem.

The language Object Pascal, in the Delphi
Rapid Application Development environment
(Williams and Walmsley 1999), is used for
practical work.

4.2 Programming
This module is intended for students with a
prior experience of programming, for example
at a standard equivalent to the English A-Level
or BTEC. The content includes the syllabus for

introductory programming as described above,
and also
 Use of components from standard,

additional and dialogue tabs of Delphi IDE;
 Exception handling;
 Advanced data structures (static and

dynamic);
 Object-oriented and modular

programming;
 Cross-platform development using Kylix

and CLX .
Because the Programming and Introductory
Programming modules had considerable
common content the question pools were
shared between them. Collectively these two
modules are referred to as Delphi
Programming.

4.3 Functional programming
This module aims to give students a parallel
experience of Unix usage and functional
programming abilities, to complement the
Windows-based Delphi programming modules.
It presents programming in Caml Light
(Cousineau and Mauny 1998) on the Sun Unix
systems. First, the students are given
exercises in using the Solaris operating system
and Open Windows environment. The Caml
Light interpreter and a text editor for
maintaining programs are introduced.
Elements of functional programming are
introduced in appropriate order including:
values, expressions, types, records, pattern
matching, higher order functions, lists,
recursion, polymorphism. The final section of
the module concentrates on using the
functional language to implement more
complicated examples.

4.4 Teaching and learning methods
Each module consists of around 50 contact
hours over 8 months. In a typical term time
week there are either two lectures per module,
or a lecture and an exercise class, or similar.
Each student has a weekly hour-long
supervised practical per module, and access to
a suitable laboratory at other times.

Practical assignments are given out regularly;
advice will be available in practical sessions.
Exercise classes assist the student to
determine the correct use of programming
constructs, and answers are distributed at the
close of the class.

The on-line Blackboard system is used to
support student learning (Lubega and Williams
2003). Material routinely used includes: lecture

www.ejel.org ISSN 1479-4403 249

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (247-256)

notes and assignments; discussion groups;
questionnaires; general information.

5. Experience of using pair
programming for the
development of ALOs

It was found that the pair programming
approach allowed much quicker, and more
efficient, production of material, even when
only one of the pair was an expert on the
subject matter, while the error rate was
reduced drastically.

5.1 True/false questions
It was decided that the first ALOs to be created
would be for the Delphi Programming. The pair
of module designers (B and C) working on this
were both experienced in the field, and had

worked together on three programming text
books (Walmsley and Williams 1990 and 2002;
Williams and Walmsley 1999) and had taught
as part of a team in the past. It was decided
that true/false questions could be quickly
created and would be a good revision aid. The
same approach would then be applied to the
Functional Programming. The pair here would
be made up of one of the Delphi Programming
pair (C) – to allow transfer of experience from
the first set, and the lecturer in charge of the
module (A).

5.1.1 Delphi programming
In one hour 20 questions and appropriate
answers were designed. See for example
Figure 1.

Figure 1: A true/false question
In this example no explanatory feedback was deemed necessary for the correct answer. In a number
of examples the same explanation was provided whether or not the right answer was selected. See for
example Figure 2.

Figure 2: Explanatory Feedback
This was thought appropriate for students who had just guessed the answer. With other questions
slightly different explanations were appropriate depending on the choice made by the students (see
Figure 3).

Figure 3: Longer explanation

The questions were then reviewed. A few
errors were identified, both typographical and
logical. The logical errors almost all were due
to the fact that the pair had recently been
preparing material related to the C
programming language.

5.1.2 Functional programming
In the first hour 26 questions and appropriate
answers were designed. These were similar in
structure to the ones created for the Delphi
Programming, see for example Figure 4.

www.ejel.org ©Academic Conferences Limited 250

Andrew Adams, Jude Lubega, Sue Walmsley et al

www.ejel.org ISSN 1479-4403 251

Figure 4: Functional programming

5.1.3 Feedback
Subsequently a student who had successfully
passed both the Delphi and Functional
Programming modules trialled some of the
assessments and raised issued about the
layout of both the questions and the answers.
For example in Figure 5 whether it was wise to
have the code on the same line as "Question:"
and then a blank line. The mix of true/false and
yes/no in the feedback was also seen to be
confusing (see Figure 6). However because of
pressure of time more assessments had been
created before this feedback was received.
This problem is often also found in rapid

development methods used in software. Some
methods, such as DSDM (Stapleton 1997)
favour including a user in the design team. In
this case it would be a student who would use
the system. However there are potential
difficulties with this approach as these
assessments were aimed at students who had
already failed the course and such students
may not be the most diligent. In addition, since
the aim of this was to quickly provide distance-
provision of revision material during the
students' summer vacation, physical
availability of students was almost impossible.

Figure 5: Positioning of the question

Figure 6: The student view

5.1.4 Stylistic issues
Between the pairs a number of differences
were noted. The most appropriate wording for
similar questions varied from one assessment
to another. Issues of punctuation also varied.
With these questions, often based on the
syntax of the programming language, care is
needed to ensure the use of punctuation in the
question does not make the question
incomprehensible.

Since rapid production was an important factor
the available environment, Blackboard, was
used. However there were a number of
frustrations in its use, which the choice of an
alternative development platform may have

avoided. In particular we experienced
difficulties with the relatively small boxes for
feedback and the inability to quickly see the
question as the students would see it.

5.2 Other questions
As well as true/false Blackboard offers a
number of different categories of questions:
 Multiple choice questions: allowing the

student a multitude of choices, one of
which is correct.

 Multiple answers: similar to multiple
choice, but the student can choose one or
more of answers. Blackboard does not
allow questions with no correct choices.

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (247-256)

www.ejel.org ©Academic Conferences Limited 252

 Fill in the blank: these are evaluated based
on a close text match, but the
interpretation of the free text input is quite
strict.

 Matching: allowing the students to pair
questions to answers.

 Ordering: allowing the students to select
the correct order the answers are to
appear in.

 Short answer essay: allowing students to
type and/or cut and paste an answer into a
text field.

5.2.1 Multiple choice questions
All the modules already extensively used
paper based multiple choice questions for tests
and formal examinations. Experience of
detractor design made creating these
questions relatively straightforward. However
the time taken was longer than for true/false:
Typically 12 questions were produced in 1
hour.

When working on the Functional Programming,
where only one of the pair was an expert in the
language, it was found to be much more
satisfactory for the less experienced person to
be the driver (that is working at the keyboard)
whilst the expert navigated. When both of the
pair were experts it was best to change roles
with every session.

5.2.2 Multiple answers
Early use of multiple answers by the Delphi
programming pair had not been successful.

The students were more familiar with multiple
choice questions and tended to select only one
answer. However it was determined that if the
question finished with the message:

(Select all that are correct.)

the students realised that there may be more
than one answer.

It was later discovered it was impossible to
have assessment where none of the multiple
answers were correct. It was found necessary
to use a final answer that said:

None of the above are correct.

The explanations for multiple answers became
more complicated depending on a number of
factors. An initial mistake was to explain which
of the answers were correct and which not in
this manner:

No - the last two are correct.
Arguments (like total) do not need
the same name in all patterns.
However they must be the same
on the lhs and rhs of the arrow in
one pattern - so first is wrong. The
second uses the wrong syntax
(brackets) for list patterns.

However when the feedback was displayed
(Figure 7) the possible answers were not
displayed as they appear when the question is
presented, and so the explanation was
nonsensical.

Figure 7: Feedback does not include all the options

5.2.3 Fill in the blank
The aim of both modules was for students to
learn how to program. In this context, while
true/false and multiple choice questions are

useful for students to assess their progress,
they are primarily summative in nature, rather
than formative. A larger aspect of formative
assessment would be useful and initially the

Andrew Adams, Jude Lubega, Sue Walmsley et al

"Fill in the Blank" style of question was
regarded as having potential in this area. For
instance, giving students a partial
function/procedure definition and asking them
to provide an appropriate section of code to
complete it. It was felt that given the precision
required for writing computer programs, that
the mechanical nature of checking the
submitted answer should not be a problem, as
it might be for many other subjects. However,
even in this case it was found to be
unsatisfactory for general use. The problem is
that the "fuzzy matching" algorithm of the
Blackboard assessment system is not
documented in any easy to find location. One
of the programming languages (Object Pascal
in Delphi) is not case-sensitive while the other
(Caml Light) is. Whitespace (spaces, returns,
tabs) are sometimes necessary, sometimes
ignored, and sometimes prohibited, depending
on the language and context. All of these
contribute to a difficulty in providing an
exhaustive set of possible correct submissions
by students. Apart from a very few simple "fill
in the blank" questions for Caml Light, it was
felt that even where possible, the use of this
question type did not provide sufficient student
value for the authors' time spent producing
them.

5.2.4 Matching and ordering
Experience of working with special needs
students (including those with dyslexia)
indicated that the format of these types of
questions created accessibility issues and it
was decided not to use them.

5.2.5 Short essay
Short essays need to be tutor marked and
since the objective of creating these
assessments was to allow students to revise
without tutor help they were not appropriate.

5.3 Code tracing
Early feedback from the student tester
suggested that "code tracing" examples should
be included. This tallied with the intent of all
the authors who agreed that this was an
important skill. "Code tracing" involves
providing students with function/procedure
definitions and an actual concrete example of
applying the function or procedure and asks for
either an identification of the final result (Black
Box tracing) or the identification of which
branches in the code will be executed in the
example (White Box tracing). In addition to
being an important skill for the students to
learn for the direct purposes of debugging their

own code (the corollary of the skill being an
improvement in their ability to produce code),
this is also a necessary skill underpinning the
important topic of program testing, which
follows on from programming modules in most
Computer Science degrees. In particular, white
box tracing is particularly necessary for
recursive programs, for which Multiple Answer
style questions were particularly useful, as a
variety of correct (and incorrect) answers could
be offered at the same time, encouraging
students who are properly engaged in the
assessment process to think clearly about the
topic.

5.4 General observations
All authors felt that the pair programming
approach improved their rate of output. The
pair approach tended to enforce a discipline of
actually implementing questions on the
system. The combination of interactive
creativity ensured that new questions and
detractors could be easily and quickly
produced. The immediate review of the peer,
combined with the knowledge of short term
testing by an experienced student, provided
confidence in the accuracy of the material
being published to students. Typographical
mistakes were almost always spotted by the
navigator and corrected before the question
was inserted. This freed the driver to produce
the question in its entirety and then return to
correct slips of the keyboard, but prevented
more serious mistakes wasting valuable author
time following up blind alleys leading to
unsuitable questions. In particular, very few
questions were abandoned once input into the
system, a definite difference from author
experience of setting such questions for exams
or class tests previously. Despite a number of
irritations (mostly due to poor interface design)
with the Blackboard question setting
environment, the experience was a positive
one for all the authors, and has produced
demonstrably useful results: students who are
due to resit the exam are using the tests to aid
in their revision.

6. Analysis of student usage
The efficiency of the pair production approach
was shown above in terms of the number of
ALOs produced in a given period. Even though
informal feedback from students to the ALOs
was positive, a more rigorous analysis of the
quality of the ALOs was desired. Thus, for the
Functional Programming module, the marks
gained by students on the ALOs was
monitored and compared to their results in the
resit exam. This cannot absolutely prove the

www.ejel.org ISSN 1479-4403 253

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (247-256)

quality of the ALOs since no control group who
had access to solo produced ALOs had their
results analysed. However, the fact that the
analysis does show a correlation between
performance on the ALOs and performance in
the resit exam demonstrates to our satisfaction
that the pair produced ALOs are of suitable
quality for their purpose. Since the original aim
was to produce ALOs of sufficient quality within
tight resource constraints, we feel this goal
was shown to be achieved. It should be noted
that the "usage statistics" for the ALOs was
restricted to that gathered by Blackboard. In

this case students were allowed to attempt
each ALO as many times as they wished and
the only data gathered was their total mark for
each ALO on their final attempt.

Fourteen students took the resit examination.
One of these had not taken the original
examination and was excluded as an anomaly
from the analysis. The marks obtained in the
Blackboard quizzes were analysed with
respect to the marks obtained in the resit
examination.

From the above results we note that there is a
positive correlation (Multiple R) between the
quiz mark and the mark attained in the resit by
the students of 0.55937. Those students who
had relatively high marks in the quiz also had
relatively high marks in the resit exam.
Therefore this is an indication that the quiz was
acting like a pretest and whoever failed, meant
that he/she was likely to fail in the resit too and

the reverse was true. Looking at the
relationship between the two performances,
we note that the p value =0.04686<0.5 hence
indicating that there is a linear relationship
between the two performances of the students.

A scatter plot showing the linear relationship is
given below:

Scatterplot (13 Students all marks.sta 10v*12c)

5.06 60.22 71.43 86.02 100.00

Total BB Points as %

26

31

34

39

42

46

50

54

57

To
ta

l R
es

it

It should be noted within our examination
system: 40% is the pass mark; marks between
30 and 40% are restricted passes that can be
compensated by good performance elsewhere.

A wider analysis of the performance of this
student cohort with respect to exams and

www.ejel.org ©Academic Conferences Limited 254

Andrew Adams, Jude Lubega, Sue Walmsley et al

Blackboard usage can be found in (Lubega
2004).

The correlation between performance on
Blackboard quizzes and the result in the resit
examination imply (though they do not
conclusively prove) that the ALOs derived from
our pair production method were useful to
students in preparing for their resit exam.
Since it has already been shown that the
lecturers felt that the pair production approach
was a more efficient way to develop such
revision aids, this strong indication that the
ALOs were useful is good evidence that it is a
useful approach. Given the time limitations of
the ALO producers (which meant that fewer
aids of a poorer "quality" could have been
produced using a traditional single producer
approach) we believe that this is sufficient
evidence on which to recommend such an
approach for general usage in the production
of ALOs.

7. Future work and conclusions

7.1 Reuse of questions
Although these question pools and
assessments have initially been produced with
the aim of providing revision support for
students who failed their initial examination, it
is felt that the questions thus produced will
certainly be useful in future years during the
initial teaching. For both Functional and
Introductory Programming, we expanded the
question pools to ensure a minimal coverage
of ten questions per topic and provide them as
self-assessment for the students during
teaching. In particular, the system of producing
new tests comprising questions drawn from
existing pools or existing tests is useful, as is
the concept of a "random selection" of a limited
number of questions from a pre-determined
pool. In Functional Programming, the tests are
open through the year and available for
multiple retakes. In the case of Introductory
Programming, the tests are set for a single
attempt and only available for a short period.
The results from Functional Programming are
not part of the final assessment of the module,
whereas the Introductory Programming tests
do contribute (a very small amount, <3%
overall) to the students' final mark. We will be
analysing the usage of the tests in each
module and any links to performance in the
end of year examination. Although the
formative utility of these tests in isolation is
probably quite limited, in combination with
students' self-directed exploration of the
programming languages' capabilities we feel

they should act as a force-multiplier, improving
the efficiency and efficacy of student time
spent learning.

7.2 Free form questions
An interesting point that arises is whether it
would be possible to produce a customisable
"fuzzy matching" algorithm which would allow
authors to set the context for "fill in the blank"
questions. As mentioned above, such
questions could be very useful in providing a
combination of both formative and summative
assessment, particularly in an area where the
aim is to improve students ability to apply their
knowledge (to synthesis programs), rather than
simply know syntactical rules.

7.3 Conclusions
We have demonstrated a novel approach to
the production of ALOs using an analogue of
the XP software development method of Pair
Programming. This has been used in a real
situation in order to efficiently produce
reusable ALOs initially for self-testing during a
revision period and then reused for testing
during the main teaching period. Our statistical
analysis demonstrates that students appear to
have benefited from the ALOs produced, as
has informal feedback from the students.
Where high quality ALO material needs to be
produced under time constraints, we can
recommend the pair production approach.

References
Adams, A. Walmsley S. and Williams S. "Pair

Programming for Rapid Development of
Assessment Learning Objects" in the
2nd European Conference on e-
Learning, Glasgow (November 2003)

Beck, K. (2000) Extreme programming
Explained: Embrace Change; Addison-
Wesley.

Blackboard (2003) http://www.blackboard.com
Guy Cousineau and Michel Mauny (1998) "The

Functional Approach to Programming"
Cambridge University Press (translator
Callaway).

IEEE (1996) Learning Technology Standard
Committee (LTSC)
http://ltsc.ieee.org/index.html

IEEE (2001) LTSC WG12.
http://ltsc.ieee.org/wg12/s_p.html

Lubega, J and Williams, S (2003) "The Effect
of Using a Managed Learning
Environment on the Performance of
Students" to be published in the
Proceedings of the International
Workshop of Interactive Computer

www.ejel.org ISSN 1479-4403 255

http://www.blackboard.com/
http://ltsc.ieee.org/index.html
http://ltsc.ieee.org/wg12/s_p.html

Electronic Journal of e-Learning Volume 2 Issue 2 2004 (247-256)

www.ejel.org ©Academic Conferences Limited 256

Aided, Villach, Austria (September
2003).

Lubega, J (2004) "Analysis of Data relating to
Students Re-sitting Functional
Programming 2003" Internal Report:
RUCS/2004/TR/01/001/A, Department
of Computer Science, The University of
Reading, UK.

Object Mentor (2001) "Pair Programming"
http://www.pairprogramming.com

Sommerville I (2001). Software Engineering
(6th edition). Addison Wesley.

Stapleton J. (1997) "DSDM: Dynamic Systems
Development Method: The Method in
Practice", Addison Wesley.

Walmsley S. and Williams S. (1990) "Basically
Modula-2", Chartwell Bratt.

Walmsley S. and Williams S. (2002) "Discover
Pascal in Delphi" Addison Wesley.

Wiley, D. A. (ed) (2000a). "The Instructional
Use of Learning Objects": Online
Version: http://www.reusability.org/read/

Wiley D.A. (2000b) Learning Object Design
and Sequencing Theory. Doctor of
Philosophy Dissertation, Brigham Young
University, 2000.

Williams S. and Walmsley S. (1999) "Discover
Delphi" Addison Wesley.

http://www.pairprogramming.com/
http://www.reusability.org/read/

	The Effectiveness of Assessment Learning Objects Produced Using Pair Programming
	Introduction
	Learning objects
	Pair programming
	The modules
	Introductory programming
	Programming
	Functional programming
	Teaching and learning methods

	Experience of using pair programming for the development of ALOs
	True/false questions
	Delphi programming
	Functional programming
	Feedback
	Stylistic issues

	Other questions
	Multiple choice questions
	Multiple answers
	Fill in the blank
	Matching and ordering
	Short essay

	Code tracing
	General observations

	Analysis of student usage
	Future work and conclusions
	Reuse of questions
	Free form questions
	Conclusions

	References

